

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.2.262

GENETIC DIVERGENCE IN MAIZE (ZEA MAYS L.) INBRED LINES UNDER SUBTROPICAL CONDITIONS OF JAMMU REGION OF INDIA

Surjeet Singh¹, R.S. Sudan^{1*}, Bupesh Kumar¹, Praveen Singh¹ and Manmohan Sharma²

¹Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu-180009, Jammu and Kashmir, India.

²School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu-180009, Jammu and

Kashmir, India.

Corresponding author E-mail: rssudanudh@gmail.com (Date of Receiving-19-04-2024; Date of Acceptance-07-07-2024)

Genetic divergence in 30 maize (*Zea mays* L.) inbred lines under subtropical conditions of Jammu region was carried out on the basis of morpho-agronomical traits using Mahalanobis D² statistics. The experiment was conducted in Randomized Complete Block Design (RCBD) during *kharif* 2021 at Maize Research Station, SKUAST-J, Udhampur, J&K. Analysis of variance revealed significant differences among the inbred lines for all the traits recorded. Estimates of genetic parameters revealed that traits like ear height (cm), kernels per row, kernels per cob, 1000 kernel weight (g) and grain yield (q/ha) were found to have high heritability coupled with high genetic advance indicating the effectiveness of these traits in selection. Kernels per cob having the highest direct effect was significantly and positively correlated with grain yield (q/ha) and kernels per row having high direct negative effect on grain yield also had significant negative correlation. Results of D² statistics classified the inbred lines into 13 clusters indicating significant variability among the inbred lines. Based on genetic diversity and mean performance WN 2453, WN 32296, PFSR 10109 and WN 32296 were found to be the most diverse parents and their combination for grain yield and are recommended to get superior recombinants for further utilization in the breeding programmes.

Key words: Maize, Morpho-agronomical traits, Heritability, D² statistics.

Introduction

Maize (Zea mays L.) is the only domesticated member of the tribe Maydeae and genus Zea. After wheat and rice, it is the third most significant cereal crop in the world. It is a diploid with 2n=2x=20 chromosomes. It belongs to the Gramineae (Poaceae) family and is known as the "queen of cereals" due to its extremely high yield potential relative to other cereals (Anonymous, 2017). It is the most adaptable cereal crop in terms of adaptability, varieties and uses. It is the second most frequently farmed crop in the world and is grown in the tropics, subtropics, and temperate regions. As a food, feed, and industrial raw material, maize is a crucial crop for billions of people. Approximately 1147.7 million metric tons (MT) of maize are produced by over 170 nations on 193.7 million hectares with an average yield of 5.75 t/ha (FAOSTAT, 2020). India is the largest producer of maize

in terms of both area (9.2 million ha) and production (27.8 million MT), with an average yield of 29.65 q/ha. In India, maize is primarily grown during the rainy (kharif) and winter seasons (rabi). Kharif maize accounts for around 83 per cent of maize area in India, while Rabi maize accounts for 17 per cent of maize area. In recent years, spring maize acreage in the north-western regions of the country has also expanded rapidly. Madhya Pradesh and Karnataka have the largest area of maize cultivation (15%), followed by Maharashtra (10%), Rajasthan (9%), Uttar Pradesh (8%), Jammu and Kashmir (3%), and others. After Karnataka and Madhya Pradesh, Bihar is the third-largest producer of maize in India. Andhra Pradesh has the greatest state output (DACNET, 2020). The region of Jammu produces 436.50 metric tons of maize from an area of 0.19 million hectares with an average yield of 22.96 q/ha (Regional digest of statistics,

2020). In either its native or modified form, maize is a staple dietary ingredient. The maize grain is an excellent source of carbohydrate (72%), ash (17%), protein (10.4%), fiber (2.5%), oil (4.5%), vitamins, and minerals (Farhad et al., 2009). The value of maize as a key staple crop and a model organism with enormous genetic diversity is recognized globally (Prasanna, 2012; Patel et al., 2017). Assessing the genetic diversity and relatedness of breeding material is the most important aspect of a breeding effort. The primary responsibility of maize breeders is the development of superior inbred lines and the identification of optimal parental combinations to produce high-performing hybrids (Semagn et al., 2012). In hybrid maize breeding, therefore, the characterization of the genetic diversity of maize germplasm or inbred lines is of utmost importance (Xia et al., 2005). For effective management of genetic diversity, wellcharacterized germplasm and genetic pools clustered according to genetic diversity are required (Wende et al., 2013). Characterization of maize inbred lines for morpho-agronomical traits has been utilized extensively to increase knowledge of genetic diversity in maize germplasm. In addition, it facilitates the expansion of the genetic base of essential maize genetic resources for sustaining genetic improvement and guides the selection of parents for the creation of new hybrids with high seed vield production potential (Ihsan et al., 2005). Different maize inbred lines of various origins and genetic backgrounds serve as a useful source of material and offer the opportunity to increase genetic variation. The understanding of genetic diversity and variability of inbred lines aids the breeder in designing ideal crossings for the generation of superior hybrids. Thus, morpho-metric characterization aids in maintaining genetic purity in the seed field by identifying and eliminating deviant plants, which facilitates directly meeting the required standards for genetic purity, physical purity, and seed certification (Madhukeshwara and Sajjan, 2015). Knowledge of heritability and the genetic advancement of traits suggests the potential for agricultural development via selection. Studies of correlation are an efficient method for identifying the relationship between the agronomic qualities of populations with a wide range of genetic diversity. Moreover, correlations among important qualities will pave the road for appropriate choices in breeding programs, and correlation coefficient analysis is the most common method for determining the relationship between the characters (Yagdi and Sozen, 2009). There is a need for High Yielding Maize Varieties in this region since its maize productivity is lower than the national average. As genetic divergence is a precondition for any crop

Table 1:	Pedigree and source of the maize inbred lines used
	in the present study.

Inbred	Dedianos	Institute main-
lines	reuigree	taining the line
WALL207	P31C4S5B-33-#-#-	WNCIL
WIN1207	11-BBBB-B-B-3	W.IN.C. Hyuerabau
WN9071-2	CML116	W.N.C.Hyderabad
WN2453	CM137	W.N.C.Hyderabad
WN129	CM152	W.N.C.Hyderabad
WN24249-1	WNCDMR 10RYFW8375	W.N.C.Hyderabad
WN2538	CM115	W.N.C.Hyderabad
WN2489	DMR QPM 03-118-#-38	W.N.C.Hyderabad
WN33153	HKIPC5	W.N.C.Hyderabad
WN52362	BPT11	W.N.C.Hyderabad
WAI5270	HEYPOOL-2011	WNCIE
WIN52/9	-38-2-1-1-1-1	w.n.C. Hyderadad
WN31984	E57B	W.N.C.Hyderabad
WN52188	G18SEQC5F76-2-1-2-1-1B*8	W.N.C.Hyderabad
SMSF7752	CM123	W.N.C.Hyderabad
EV1439	EV 1439	W.N.C.Hyderabad
HKI-193-1	CML193	Kamal
PFSR-10109	PFSR-10109	W.N.C.Hyderabad
EV1465	NC392	W.N.C.Hyderabad
EV1463	NC390	W.N.C.Hyderabad
UDMI-128-1-5	CML114	MRS,SKUAST-J
V-351	V-351	Almora
WN32296	WNCDMR10RYWS8384(B)	W.N.CHyderabad
HKI-536	HKI-536	Kamal
HKI-323-4-1	HKI-323	Kamal
WN4614-1	DMRN14	W.N.C.Hyderabad
WN2199	CML427	W.N.C.Hyderabad
XXX 1070	P31C4S5B-85-##-1-4-5-	
WN10/9	BBB-B-B-3	W.N.C. Hyderabad
WN554	CML259	W.N.C.Hyderabad
	CA14502-BBB-BB/	
	(DT/LN/EM-46-3-1x	
Z-490-26	CML311-2-1-3)-B-F153	W.N.C.Hyderabad
	-1-1-1-B)-BBB-1-B	
HKI-1105-2-1	HKI-1105	Kamal
WN2402-2	LM14	W.N.C.Hyderabad
	Inbred lines WN1207 WN9071-2 WN2453 WN129 WN24249-1 WN24249-1 WN2453 WN24249-1 WN24538 WN24530 WN24538 WN2489 WN52362 WN5279 WN52188 SMSF7752 EV1439 HKI-193-1 PFSR-10109 EV1465 EV1463 UDMI-128-1-5 V351 WN32296 HKI-536 HKI-5323-4-1 WN4614-1 WN2199 WN1079 WN1079 WN1079 WN1079 KI-490-26 HKI-1105-2-1 WN2402-2	Inbred linesPedigreeInbred linesP31C4S5B-33.#.#. 11.BBBB-B-B-3WN1207P31C4S5B-33.#.#. 11.BBBB-B-B-3WN9071-2CML116WN2453CM1137WN129CM152WN24249-1WNCDMR10RYFW8375WN24249-1WNCDMR10RYFW8375WN2439DMR QPM03-118.#.38WN3153HKIPC5WN5262BPT11WN5279-382-1-1-1-1WN5279-382-1-1-1-1WN31984E57BWN52188G18SEQCSF76-2-1-2-1-1B*8SMSF7752CM123EV1439EV1439FSR-10109PFSR-10109FSR-10109PFSR-10109EV1463NC390UDMI-128-1-5CML114V351V-351WN32296WNCDMR10RYWS8384(B)HKI-334-1HKI-333WN4614-1DMRN14WN2199CML427BBB-B-B-3BB-B-B-3WN1079BBB-B-B-3WN554CML259KM1071-BBB-B-B-3WN554CML259HKI-105-2-1HKI-105HKI-105-2-1HKI-1105WN2402-2LM14

improvement program, the available 30 inbred lines must be used for their genetic diversity in order to generate High Yielding Varieties. The selection of varied parents will yield superior recombinants.

Materials and Methods

The present study was carried out at the Maize Research Station, SKUAST-J, Udhampur, UT-J&K during *Kharif* season 2021. A total of 30 maize inbred lines of diverse origin are procured from four different institutes, these are from W.N.C. Hyderabad, Karnal, Almora and Maize Research Station Udhampur evaluated for various traits, at research farm of Maize Research

Characters	Genotypic Coefficient Variance (%)	Phenotypic Coefficient Variance (%)	Heritability (%)	Genetic Advance	Genetic advance as a percentage of mean (%)
No. of days to 50% tasseling	6.63	7.29	82.80	6.68	12.44
No. of days to 50% silking	6.41	6.98	84.43	6.87	12.14
No. of days to 75% dry husk	3.75	4.35	74.26	6.91	6.66
Plant height (cm)	13.44	15.98	70.75	38.90	23.28
Ear height (cm)	27.69	29.49	88.15	32.39	53.54
Kernels rows per cob	8.26	9.18	80.84	1.72	15.29
Kernels per row	15.73	17.77	78.32	65.24	28.69
Kernels per cob	15.74	17.78	78.33	65.25	28.70
Cob girth (cm)	12.70	14.20	79.98	2.67	23.39
Cob length (cm)	12.78	13.98	83.63	3.34	24.08
Stem girth (cm)	14.69	16.12	83.02	1.89	27.57
No. of cobs per plant	18.13	19.70	84.67	0.39	34.37
No. of plants per plot	5.68	7.82	52.87	1.91	8.51
1000 kernel weight (g)	15.03	17.10	77.33	71.25	27.23
Moisture percentage (%)	3.57	4.77	56.06	1.35	5.50
Shelling percentage (%)	5.37	6.00	68.30	7.14	9.14
Grain yield (q/ha)	23.33	25.65	82.72	18.32	43.71

 Table 2:
 Estimates of genetic parameters among inbred lines under the present study.

Station, SKUAST-J, Udhampur, J&K. The details of experimental material are given in Table 1. The material underwent testing using a Randomized block design. The experiment was carried out in three replications, each of which included a total of 30 different genotypes. Every treatment was sown in two rows, each one measuring three meters in length and sixty centimeters row to row distance. The experiment was carried out standard package of practices for maize crop. Data was recorded on different morpho-agronomical traits such as, no. days to 50% tasseling, no. of days to 50% silking, no. days to 75% dry husk, plant height (cm), ear height (cm), kernels rows per cob, kernels per row, kernels per cob, cob girth (cm), cob length (cm), stem girth (cm), number of cobs per plant, number of plants per plot, 1000 kernel weight (g), moisture percentage (%), shelling percentage (%) and grain yield (q/ha). Data was subjected to analysis of Mahalanobis D² statistics using OPSTAT and R softwares. Intra-cluster and Inter-cluster distance, cluster mean and contribution of each trait to the divergence were estimated as suggested by Singh and Chaudhary (1985).

Results and Discussion

30 maize inbred lines (Table 1) were evaluated in Randomized Complete Block Design (RCBD) for seventeen traits and the results revealed that the mean sum of squares due to treatments was found to be significant for all the traits *i.e*, no. days to 50% tasseling, no. of days to 50% silking, no. days to 75% dry husk, plant height (cm), ear height (cm), kernels rows per cob, kernels per row, kernels per cob, cob girth (cm), cob length (cm), stem girth (cm), number of cobs per plant, number of plants per plot, 1000 kernel weight (g), moisture percentage (%), shelling percentage (%) and grain yield (q/ha) indicating that these inbred lines are distinct from each other. The inbred line WN 2199 had the highest number of days to 50% tasseling, while EV 1439 had the lowest number of days to 50 % tasseling. The inbred WN2199 has the highest number of days to 50% silking, while EV1439 has the lowest number of days to 50% silking. The inbred line WN 2199 had the highest number of days to 75% dry husk, whereas EV1439 had the lowest. The WN52188 inbred line produced the tallest plants, while the inbred line WN 33153 had the shortest plant height. The inbred line WN52188 produced the longest ears, while inbred line WN 33153 exhibited the shortest ear length. The inbred line WN 9071-2 had the greatest number of kernels rows per cob, while inbred line V-351 had the fewest. The inbred line WN 129 had the highest number of kernels per row, whereas the inbred line V-351 had the lowest number of kernels per row. The inbred line WN129 had the highest kernels per cob compared to other inbred lines, V-351 had the lowest kernels per cob. The inbred line WN 2453 had the maximum cob girth, whereas the inbred line V-351 had the minimum cob girth. The highest number of plants per plot was recorded for the inbred lines WN 554 and Z-490-26, while, the inbred line WN 52188 recorded the lowest number of plants per plot. The inbred line WN

		DT	DS	DDH	PH	ЕН	KRPC	KPR	KPC	CG	CL	SG	NCPP	NPPP	1000 KW	MP	SP
DS	ıg	0995**															
	p	0990**															
DDH	ıg	0965**	0971**														
	p	0.894**	0.893**														
PH	ıg	0.456**	0.486**	0.614**													
	p	0375**	0.403**	0.445**													
EH	ıg	0.477**	0503**	0576**	0956**												
	p	0383**	0.414**	0.473**	0.788**												
KRPC	ıg	-0.201	-0.167	-0.163	-0.146	-0.130											
	p	-0.164	-0.132	-0.121	-0.132	-0.121											
KPR	ıg	-0.056	-0.009	-0.012	0.053	0.024	0.695**										
	p	-0.041	0.003	-0.036	0.051	0.011	0.672**										
KPC	ıg	-0.056	-0.009	-0.012	0.053	0.024	0.695**	1000**									
	p	-0.041	0.003	-0.036	0.051	0.011	0.672**	1000**									
CG	ıg	0.098	0.141	0.064	0.088	-0.027	0.485**	0.735**	0.735**								
	p	0.092	0.133	0.100	0.011	-0.028	0515**	0.664**	0.664**								
CL	ıg	0.183	0.247*	0206	0386**	0306**	0.251*	0.685**	0.685**	0.759**							
	p	0.144	0206	0.149	0.252*	0.251*	0290**	0.640**	0.640**	0.734**							
SG	ıg	-0.054	-0.008	0.054	0.150	0.099	0318**	0.265*	0.265*	0532**	0.419**						
	p	-0.067	-0.025	0.055	0.164	0.211*	0.247*	0.195	0.195	0.419**	0.340**						
NCPP	ıg	0.085	0.073	0.065	0.036	0.177	-0.315**	-0.401**	-0.401**	-0.158	-0258*	0.029					
	p	0.068	0.061	0.030	0.044	0.131	-0.272**	-0.331**	-0.331**	-0.156	-0.206	-0.011					
NPPP	ıg	-0.069	-0.060	-0.022	0.114	0.214*	-0.166	-0.371**	-0.371**	-0.365**	-0.352**	-0.109	0272**				
	p	-0.045	-0.036	0.004	0.068	0.181	-0.139	-0.315**	-0315**	-0241*	-0255*	-0.063	0.161				
1000	ıg	0.051	0.121	0.068	0.265*	0.184	0.183	0.430**	0.430**	0.493**	0.448**	0.487**	-0.196	-0.115			
KW	p	0.019	0.073	0.011	0.216*	0.115	0.174	0332**	0332**	0368**	0364**	0373**	-0.180	-0.144			
MP	ıg	0.034	0.108	0.028	0.231*	0.188	0309**	0594**	0594**	0.647**	0505**	0.445**	0303**	0.056	0.898**		
	p	-0.004	0.051	0.050	0.156	0.159	0.214*	0359**	0359**	0.425**	0341**	0340**	0.214*	-0.057	0576**		
SP	ıg	0.061	0.119	0.120	0.257*	0274**	0.407**	0.673**	0.673**	0.672**	0.480**	0.484**	0.232*	-0.018	0.688**	1.079**	
	p	0.014	0.057	0.031	0.183	0.196	0.419**	0.657**	0.657**	0560**	0.443**	0328**	0.223*	-0.013	0594**	0589**	
GY	ıg	0.063	0.125	0.095	0.222*	0285**	0272**	0.477**	0.477**	0522**	0.409**	0.420**	0346**	0.138	0.731**	1.139**	0944**
	p	0.040	0.097	0.027	0.212*	0.210*	0300**	0.489**	0.489**	0.457**	0389**	0304**	0345**	0.127	0.685**	0.722**	0.881**

Table 3: Estimates of genotypic (rg) and phenotypic (rp) correlation coefficients among 17 characters of maize inbred lines.

*, ** significant at 5% and 1% level, respectively

*Abbreviations: DT= days to 50% tasseling, DS= days to 50% silking, DDH= days to 75% dry husk, PH= plant height (cm), EH= Ear height (cm), KRPC= kernels rows cob-¹, KPR= kernels row-¹·KPC= kernels cob-¹, CG= cob girth (cm), CL= cob length (cm), SG= stem girth (cm), NCPP= No. of cobs plant-¹, NPPP=No. of plants plot-¹,1000KW= 1000 kernel weight (g), MP= moisture percentage (%), SP= shelling percentage (%), GY= grain yield

9071-2 produced the longest cob length, whereas the inbred line V-351 produced the shortest cob length. The inbred line HKI-323-4-1 had the highest stem girth measurements, whereas inbred line UDMI-128-1-5 had the lowest measurement for stem girth. The highest number of cobs per plant was recorded by the inbred lines WN 5279 while inbred lines WN 1207, WN 9071-2, WN 2453, WN 129, WN 24249-1, WN 2489, WN 33153, WN 52362, WN 31984, EV 1439, HKI-193-1, PFSR-10109, UDMI-128-1-5, V-351, WN 1079, WN 554, Z-490-26,WN 2402-2 had the lowest number of cobs per plant. The inbred line HKI-323-4-1 recorded the highest

1000 kernel weight, whereas the inbred line WN 33153 recorded the lowest. The WN 2538 inbred line had the highest moisture percentage (%) value, while the inbred line V-351 had the lowest moisture percentage (%) value. The Z-490-26 inbred line had the highest shelling percentage (%) and as opposed to the inbred line V-351 had the lowest shelling percentage (%). The inbred line Z-490-26 had the greatest grain yield (q/ha), while the inbred line V-351 had the lowest grain yield (q/ha). A critical analysis of genetic variability present in the germplasm of a crop and its estimation is a prerequisite for initiating any crop improvement program as well as

auto 1.	ז מווו רחר		n Smmoll	יור מדר היו					ביטוע ווושנצ	ч .							
	DT	DS	HQQ	Hd	HH	KRPC	KPR	KPC	GG	ď	SG	NCPP	APPP	1000KW	MP	SP	G
Dľ	-0.2089	0.35403	-0.28327	-0.1174	0.1793	0.01605	0.21672	-0.38984	-0.00849	-0.00087	0.01634	-0.00218	0.12375	0.03803	-0.0067	0.01164	0.0400
DS	-0.2034	0.3637	-0.2674	-0.0905	0.1200	0.0202	0.1360	-0.2993	-0.1308	0.1672	0.0441	0.0000	0.1246	0.1033	-0.0195	0.0023	0.0971
HQQ	-0.2018	0.3316	-0.2932	-0.1658	0.2816	0.0082	0.1966	-0.3368	0.0037	-0.0644	0.0086	-0.0184	0.1295	-0.0914	0.0046	0.0173	0.0273
Hd	0.0770	-0.1034	0.1527	0.3183	-0.6318	0.0125	-0.1019	0.1521	-0.0785	0.4415	-0.0065	0.1392	-0.0408	0.3884	-0.0572	-0.0264	0.2122^{*}
ΗI	0.0568	-0.0661	0.1252	0.3049	-0.6596	-0.0002	-0.0731	0.2236	-0.0427	0.4166	-0.0205	0.0942	-0.0468	0.3201	-0.0493	-0.0239	0.2105^{*}
KRPC	0.0437	-0.0956	0.0314	-0.0519	-0.0016	-0.0768	-0.0905	0.5941	0.1281	-0.1317	-0.1073	-0.1848	-0.0812	-0.4774	0.0600	0.0130	0.3004**
KPR	0.0502	-0.0548	0.0639	0.0360	-0.0535	-0.0077	-0.9019	1.1965	-0.6824	0.9389	0.0521	-0.0312	-0.1013	-0.1711	-0.0153	-0.0221	0.4833*;
KPC	0.0619	-0.0828	0.0751	0.0368	-0.1121	-0.0347	-0.8203	1.3155	-0.5533	0.7957	0.0115	-0.0987	-0.1388	-0.3184	0.0031	-0.0171	0.4892**
œ	-0.0020	0.0530	0.0012	0.0278	-0.0314	0.0110	-0.6857	0.8109	-0.8975	1.0934	0.1426	-0.0479	-0.0265	0.0092	-0.0388	-0.0230	0.4574**
Œ	0.0002	0.0512	0.0159	0.1182	-0.2312	0.0085	-0.7124	0.8806	-0.8256	1.1886	0.1009	-0.0226	-0.0254	0.1280	-0.0524	-0.0335	0.3893**
SG	-0.0171	0.0803	-0.0126	-0.0104	0.0678	0.0413	-0.2352	0.0757	-0.6408	0.6007	0.1997	-0.0059	0.0601	0.1878	-0.0396	-0.0185	0.3041**
NCPP	0.0012	0.0000	0.0137	0.1122	-0.1574	0.0359	0.0712	-0.3289	0.1089	-0.0679	-0.0030	0.3949	0.0506	0.1240	-0.0390	0.0021	0.3454**
NPPP	-0.0718	0.1258	-0.1054	-0.0361	0.0858	0.0173	0.2538	-0.5069	0.0661	-0.0837	0.0333	0.0555	0.3601	0.2984	-0.0069	-0.0357	0.1274
1000KV	V -0.0105	0.0494	0.0353	0.1627	-0.2778	0.0482	0.2030	-0.5511	-0.0109	0.2001	0.0493	0.0644	0.1414	0.7600	-0.0588	-0.0471	0.6852**
M	-0.0143	0.0723	0.0138	0.1861	-0.3327	0.0471	-0.1406	-0.0415	-0.3555	0.6360	0.0808	0.1573	0.0254	0.4568	-0.0978	-0.0237	0.7221^{**}
SP	0.0300	-0.0104	0.0624	0.1037	-0.1941	0.0123	-0.2456	0.2768	-0.2541	0.4908	0.0456	-0.0103	0.1584	0.4412	-0.0286	-0.0811	0.8811*>
*Abbrev	iations: DT	= days to 5	50% tasselin	ng, DS= di	tys to 50%	silking, DI	DH = days	to 75% dry	husk, PH=	plant heig	ght (cm), E	H= Ear hei	ght (cm), k	RPC= ker	nels rows c	ob- ¹ , KPR=	kernels
-wol	NPC= Kell	ופוצ כטט- יר	יכ= ניטט או	Ltn (cm), L	T= COD IG	ngun (cuu),	ncell stell	girth (cill).		0. 01 COUS	Dlant-, INF	FF=NU. UI	plants plot			The weigh	Бі

 Table 4:
 Path coefficients showing the direct and indirect effect of various traits on grain yield

adopting appropriate selection techniques (Sravanti et al., 2017). Thirty inbred lines of maize were used to calculate the genetic variability for seventeen morpho-agronomical traits. An examination of the Table 2 showed that for each of the seventeen traits under investigation, the phenotypic coefficient of variation (PCV) was greater than the genotypic coefficient of variation (GCV). If the value Of PCV > GCV, it means that the apparent variation is not only due to genotypes but also due to the influence of the environment. The highest phenotypic coefficient of variance was observed for ear height (cm) (29.49) and the lowest was found in no. days to 75% dry husk (4.35). The highest genotypic coefficient of variance was observed for ear height (cm) (27.69) and the lowest was found in moisture percentage (%) (3.57). If the value of heritability in a broad sense is high, it indicates that though the character is least influenced by the environment, the selection may not be useful, as it includes total genetic variance which includes both fixable and non-fixable components. The knowledge of heritability enables the plant breeder to decide the course of selection procedure to be followed under a given situation (Li et al., 1985). The highest heritability was observed for ear height (cm) (88.15) and the lowest was found in number of plants per plot (52.87). If the value of genetic advance is high, it shows that characters are governed by additive genes and selection will be rewarding. The highest genetic

Table 5:Allocation of Maize inbred lines in various clusters
based on D² statistics (Tocher's Method).

Cluster No.	No. of inbred lines	Description of Inbred lines
Cluster 1	3	EV 1465, HKI-1105-2-1, HKI-323-4-1
Cluster 2	3	WN 52362, WN 31984, UDMI-128-1-5
Cluster 3	5	WN 1207, HKI-536, EV 1463, WN 2489, HKI-193-1
Cluster 4	3	PFSR-10109, WN 2402-2, WN 2453
Cluster 5	1	WN 5279
Cluster 6	3	Z-490-26, WN 554, WN 2538
Cluster 7	3	WN 129, WN 24249-1, EV 1439
Cluster 8	2	WN 32296, WN 2199
Cluster 9	2	WN 1079, WN 9071-2
Cluster 10	1	WN 52188
Cluster 11	1	WN 4614-1
Cluster 12	2	WN 33153, SMSF 7752
Cluster 13	1	V-351
The estimate	as of intr	a and inter cluster distance for thirteen

distance was found in cluster 9 (85.24). The maximum inter-cluster distance was found in cluster 9 (85.24). The maximum inter-cluster distance was recorded between cluster 8 and cluster 4 (922.62) and lowest inter-cluster distances were observed between cluster 2 and cluster 10 (98.37).

MP= moisture percentage (%), SP= shelling percentage (%), GY= grain yield(q/ha)

	Cluster	Cluster	Cluster	Cluster	Cluster	Cluster	Cluster	Cluster	Cluster	Cluster	Cluster	Cluster	Cluster
	1	7	3	4	Ś	9	7	×	6	10	11	12	13
Cluster 1	54.74	390.58	193.58	157.33	131.29	125.89	218.70	565.11	217.94	317.29	130.78	298.09	232.82
Cluster 2		57.10	179.62	632.52	245.17	236.46	413.22	122.88	118.20	98.37	566.82	685.16	417.37
Cluster 3			73.66	318.53	102.67	99.12	140.87	275.99	106.28	221.34	240.12	292.78	163.18
Cluster 4				54.07	348.20	231.58	180.18	922.62	354.55	600.58	124.17	202.95	223.66
Cluster 5					0.00	137.21	202.64	296.85	164.47	227.54	213.57	306.76	230.74
Cluster 6						59.58	139.76	418.21	113.11	241.48	176.71	302.25	194.06
Cluster 7							68.28	621.11	223.17	474.36	167.01	124.69	121.52
Cluster 8								58.95	249.39	157.53	761.86	906.95	592.48
Cluster 9									85.24	113.82	331.19	463.33	308.08
Cluster 10										0.00	480.46	750.06	525.75
Cluster 11											0.00	156.21	227.13
Cluster 12												77.40	135.25
Cluster 13													0.00
Parents ba crop impro	sed on geneti	c distance and ams (Mohamn were found	l superior per nadi <i>et al.</i> , 20 d to he the mo	se performanc 03; Kitti <i>et a</i> . ost diverse par	e for differen 1, 2012). Bas rent and their	t morpho-agro ed on genetic r combination	biomical traits diversity and for grain viel	s are presented mean perform	1 in Table 7. 1ance, WN 24 1ended for sur	Genetic dive 453 ×WN 323 nerior recomb	rsity is an im 296 and PFSF binants	portant compc t 10109 ×WN	nent of 32296
		MOLUTIONI		nd nern in her	VIII, and unvil	CONTRACTOR	TOL BIATH JICI		ne lot nonio	har tot tagaint	ounants.		

advance was observed for 1000 kernel weight (g) (71.25) and the lowest was found in number of cobs per plant (0.39). High heritability coupled with high genetic advance is effective for selection. To compare genetic advance in 2 different traits, genetic advance as a percentage of mean is needed how much advancement is there for the traits. Genetic Advance is the improvement in the mean genotypic value of selected parents over the parent population. The highest genetic advance as percentage of mean was observed for ear height (cm) (53.54) and the lowest was found in moisture percentage (%) (5.50). High genetic advance coupled with high heritability was observed by (Larik et al., 2000; Bharathiveeramani et al., 2012; Sandeep et al., 2015; Kinfe and Tsehaye, 2015) for grain yield.

Correlation coefficients were analyzed between all the possible combinations of the traits and were estimated and have been represented in Table 3. Yield, as it is well known, is a complex trait and its performance is the result

Table 7: Diverse maize inbred lines based on genetic distance and superior per se performance for different morpho-agronomical traits.

S. No.	Characters	Clu- ster	Suitable parents in cluster	<i>per se</i> perfor- mance
1.	No. of days to 50 % tasseling	12	WN 33153	47.67
2.	No. of days to 50 % silking	12	WN 33153	50.33
3.	No. of days 75% dry husk	12	WN 33153	98.00
4.	Plant height (cm)	10	WN 52188	214.40
5.	Ear height (cm)	10	WN 52188	90.80
6.	Kernel row per cob	7	WN 129	12.65
7.	Kernels per row	4	PFSR-10109	24.72
8.	Kernels per cob	9	WN 9071-2	304.28
9.	Cob girth (cm)	4	WN 2453	14.35
10.	Cob length (cm)	10	WN 52188	16.53
11.	Stem girth (cm)	11	WN 4614-1	8.37
12.	No. of cobs per plant	5	WN 5279	1.73
13.	No. of plants per plot	6	Z-490-26 WN 554	24.00
14.	1000 kernel weight (g)	10	WN 52188	321.70
15.	Moisture percentage (%)	6	WN 2538	26.37
16.	Shelling percentage (%)	6	Z-490-26	82.52
17.	Grain yield per plot (g)	6	Z-490-26	56.55

of the interaction of several characters. Estimates of genotypic and phenotypic correlations among the characters have, therefore, been found useful in planning and evaluating breeding programs (Johnson et al., 1955; Al-Jibouri et al., 1958). The grain yield (q/ha) exhibited significant and positive genotypic correlation with plant height (cm) (0.222), ear height (cm) (0.285), kernels rows per cob (0.272), kernels per row (0.477), kernels per cob (0.477), cob girth (cm) (0.522), cob length (cm) (0.409), stem girth (cm) (0.420), number of cobs per plant (0.346), no. of plants per plot (0.138), 1000 kernel weight (g) (0.731), moisture percentage (%) (1.139), shelling percentage (%) (0.944), while positive but non-significant genotypic correlation with no. days to 50% tasseling (0.063), no. of days to 50% silking (0.125), no. days to 75% dry husk (0.095). The grain yield (q/ha) exhibited significant and positive phenotypic correlation with plant height (cm) (0.212), ear height (cm) (0.210), kernels rows per cob (0.300), kernels per row (0.489), kernels per cob (0.489), cob girth (cm) (0.487), cob length (cm) (0.389), stem girth (cm) (0.304), number of cobs per plant (0.345), number of plants per plot (0.127), 1000 kernel weight (g) (0.685), moisture percentage (%) (0.722), shelling percentage (%) (0.881), while positive but non-significant phenotypic correlation with no. days to 50% tasseling (0.040), no. of days to 50% silking (0.097), no. days to 75% dry husk (0.027). Path coefficient analysis (Dewey and Lu, 1959) furnished a method partitioning the correlation coefficient into direct and indirect effects and provides information on the actual contribution of a trait to the yield. The results of path analysis depicting direct and indirect effects of independent variables (components characters) and dependent variable (grain yield) are given in Table 4. For identifying genetically diverse parents for hybridization, multivariate analysis (Mahalanobis D² statistics, 1936) has been used in almost all crop species. On the basis of the relative magnitude of distances, thirty inbred lines were grouped into 13 clusters such that the intra-cluster distance of inbred lines within the cluster was smaller than the inter-cluster distance of inbred lines belonging to different clusters. The distribution pattern of inbred lines in each cluster is shown in Table 5 in accordance with the Mahalanobis D² analysis utilizing Tocher's method (Rao, 1952). Cluster 3 contained the maximum number of inbred lines (5) followed by clusters 1, 2, 4, 6, 7 having 3 inbred lines, clusters 8, 9, and 12 having 2 inbred lines, clusters 5, 10, 12 having 1 inbred line each. The inbred lines exhibited a random pattern of distribution into various clusters showing that genetic diversity and geographical diversity are not related. This means that geographic diversity, though important, was not the only factor in determining genetic divergence (Yadav *et al.*, 2001). The traits contributing maximum towards D^2 value need to be given greater emphasis for deciding on the clusters to be chosen for further selection and choice of parents for hybridization (De *et al.*, 1988).

The estimates of intra and inter-cluster distance for thirteen clusters are presented in Table 6. The highest intra-cluster distance was found in cluster 9 (85.24). The maximum inter-cluster distance was recorded between cluster 8 and cluster 4 (922.62) and lowest inter-cluster distances were observed between cluster 2 and cluster 10 (98.37).

Parents based on genetic distance and superior per se performance for different morpho-agronomical traits are presented in Table 7. Genetic diversity is an important component of crop improvement programs (Mohammadi *et al.*, 2003; Kitti *et al.*, 2012). Based on genetic diversity and mean performance, WN 2453 ×WN 32296 and PFSR 10109 ×WN 32296 were found to be the most diverse parent, and their combination for grain yield and recommended for superior recombinants.

Conclusion

Multiple studies on maize have demonstrated that inbred lines derived from diverse stock tend to be more productive than crosses between inbred lines of the same variety (Vasal, 1998). Maize inbred lines represent a fundamental resource for studies in genetics and breeding and are used extensively in hybrid corn production (Anderson et al., 1952). Analysis of variance revealed significant differences among the inbred lines for all the traits recorded, indicating sufficient variation in the inbred lines. The characters like grain yield, kernels per row, kernels per cob, 1000 kernel weight, ear height, and plant height showed high heritability and genetic advance while, kernels rows per cob, kernel per cob, cob girth, cob length, stem girth, plant height, ear height, 1000 kernel weight, moisture percentage, and shelling percentage had a highly significant positive and direct association with grain yield. Hence, selection based on such component characters may increase the grain yield in maize inbred lines. D² analysis grouped thirty maize inbred lines into thirteen clusters. The high number of clusters and their value for genetic divergence study showed the presence of a significant amount of genetic diversity. Based on genetic diversity, mean performance, WN 2453, WN 32296, PFSR 10109 and WN 32296 were found to be the most diverse parent, and these inbred lines can further be utilized for crossing programs to achieve high-yielding hybrids in maize.

References

- Al-Jibouri, H.A., Miller P.A. and Robinson H.V. (1958). Genotypic and environmental variance and co-variances in an upland cotton cross of interspecific origin. *Agronomy Journal*, **50**, 633-636.
- Anderson, E. and Brown W.L. (1952). Origin of corn belt maize and its genetic significance. *Heterosis*, **1**, 124-148.
- Anonymous (2017). State wise Area, Production and Productivity of Maize in India, <u>https://www.indiaagristat</u>.<u>.com</u>.
- Bharathiveeramani, B., Prakash M. and Seetharam A. (2012). Variability studies of quantitative characters in maize (*Zea mays L.*). *Electronic Journal of Plant Breeding*, 3(4), 995-997.
- DACNET (2020). Directorate of Economics and Statistics, Ministry of Agriculture. Govt. of India.
- De, R.N., Seetharaman R., Sinha M.K. and Banerjee S.P. (1988). Genetic divergence in rice. *Indian Journal of Genetics* and Plant Breeding, 48(2),189-194.
- Dewey, D.R. and Lu K. (1959). A correlation and pathcoefficient analysis of components of crested wheatgrass seed production. *Agronomy Journal*, **51**(9), 515-518.
- FAOSTAT (2020). Food and Agricultural Organisation of the United Nations Statistical database. Available online: http://www.fao.org/faostat/en/# data.
- Farhad, W., Saleem M.F., Cheema M.A. and Hammad H.M. (2009). Effect of different manures on the productivity of spring maize (*Zea mays L*). *Journal of Animal and Plant Sciences*, **19**(**3**), 122-125.
- Ihsan, H., Khalil I.H., Rehman H. and Iqbal M. (2005). Genotypic variability for morphological and reproductive traits among exotic maize hybrids. Sarhad Journal of Agriculture, 21(4), 599-602.
- Johnson, H.W., Robinson H.F. and Comstock R.W. (1955). Estimates of genetic and environment variability in Soybean. Agronomy Journal, 47, 314-318.
- Kinfe, H. and Tsehaye Y. (2015). Studies of heritability, genetic parameters, correlation and path coefficient in elite maize hybrids. *Academic Research Journal of Agricultural Science and Research*, **3**(10), 296-303.
- Kitti, B., Peerasak S., Pramote S. and Choosak J. (2012). Genetic distance and heterotic pattern among single cross hybrids within waxy maize (*Zea mays L.*). SABRAO Journal of Breeding and Genetics, 44, 382-397.
- Larik, A.S., Malik S.I., Kakar A.A. and Naz M.A. (2000). Assessment of heritability and genetic advance for yield and yield components in *Gossypium hirsutum* L. *Scientific Khyber*, 13, 39-44.
- Li, C.M. and Yang K.C. (1985). Studies on inheritance of quantitative characters for plant type in some inbred lines of maize. *Scientia Agriculture Sinica*, **19**, 28-36.
- Madhukeshwara, B.P. and Sajjan A.S. (2015). Morphometric characterization of maize hybrids and their parents using

DUS guidelines. Advanced Research Journal of Crop Improvement, 6(2), 178-182.

- Mohammadi, S.A. and Prasanna B.M. (2003). Analysis of Genetic Diversity in Crop Plants-Salient Statistical Tools and Considerations. *Crop Science*, **43**, 1235-1248.
- Patel, K.A., Khanorkar S.M., Damor A.S. and Parmar H.K. (2017). Microsatellite based molecular characterization and genetic diversity analysis of maize (*Zea mays L.*) inbred lines. *International Journal of Agriculture*, *Environment and Biotechnology*, **10**, 773-776.
- Prasanna, B.M. (2012). Diversity in global maize germplasm: characterization and utilization. *Journal Bioscience*, 37, 843-855.
- Rao, C.R. (19520. Advanced Statistical Methods in Biometrical Research. *John Willey and Sons*, New York.
- Sandeep, S., Bharathi M., Reddy V.N. and Eswari B.K. (2015). Genetic variability, heritability and genetic advance studies in inbreds of maize (*Zea mays L.*). *Ecology*, *Environment and Conservation*, 21, 445-449.
- Semagn, K., Magorokosho C., Vivek B.S., Makumbi D., Beyene Y., Mugo S., Prasanna B.M. and Warburton M.L. (2012). Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. *BMC Genomics*, **13**(1), 1-11.
- Singh, R.K. and Chaudhary B.D. (1985). Biometrical methods in quantitative genetic analysis. *Kalyani Publishers*, New Delhi. India.
- Sravanti, K., Swarnalatha I., Sudarshan M.R. and Supriya K. (2017). Evaluation of maize genotypes (Zea mays L.) for variability, heritability and genetic advance. International Journal of Current Microbiology and Applied Sciences, 6(10), 2227-2232.
- Vasal, S.K. (1998). Hybrid maize technology: Challenges and expanding possibilities for research in the next century. In: *Proceeding 7th Asian Regional Maize Workshop*, Los Banos, Philippines, 58-62.
- Wende, A., Shimelis H., Derera J., Mosisa W., Danson J. and Laing M.D. (2013). Genetic interrelationships among medium to late maturing tropical maize inbred lines using selected SSR markers. *Euphytica*, **191**, 269-277.
- Xia, X.C., Reif J.C., Melchinger A.E., Frisch M., Hoisington D.A., Beck D., Pixely K. and Warburton M.L. (2005). Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers. *Crop Sciences*, 45, 2573-2582.
- Yadav, O.P., Weltzien R.E. and Bhandari D.C. (2001). Genetic variation and trait relationship in pearl millet landraces from Rajasthan. *Indian Journal of Genetics and Plant Breeding*, 61, 322-326.
- Yagdi, K. and Sozen E. (2009). Heritability, variance components and correlations of yield and quality traits in durum wheat (*Triticum durum* Desf.). *Pakistan Journal of Botany*, 41(2), 753-759.